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Abstract
One way to enhance the reasoning capability of
Large Language Models (LLMs) is to conduct
Supervised Fine-Tuning (SFT) using Chain-of-
Thought (CoT) annotations. This approach
does not show sufficiently strong generaliza-
tion ability, however, because the training only
relies on the given CoT data. In math problem-
solving, for example, there is usually only one
annotated reasoning path for each question in
the training data. Intuitively, it would be better
for the algorithm to learn from multiple an-
notated reasoning paths given a question. To
address this issue, we propose a simple yet ef-
fective approach called Reinforced Fine-Tuning
(ReFT) to enhance the generalizability of learn-
ing LLMs for reasoning, with math problem-
solving as an example. ReFT first warmups
the model with SFT, and then employs on-line
reinforcement learning, specifically the PPO
algorithm in this paper, to further fine-tune the
model, where an abundance of reasoning paths
are automatically sampled given the question
and the rewards are naturally derived from the
ground-truth answers. Extensive experiments
on GSM8K, MathQA, and SVAMP datasets
show that ReFT significantly outperforms SFT,
and the performance can be potentially further
boosted by combining inference-time strategies
such as majority voting and re-ranking. Note
that ReFT obtains the improvement by learn-
ing from the same training questions as SFT,
without relying on extra or augmented training
questions. This indicates a superior generaliza-
tion ability for ReFT 1.

1 Introduction

The state-of-the-art approaches to solving math
problems (Luo et al., 2023; Wang et al., 2023a)
employ Supervised Fine-Tuning (SFT) to train
the models using Chain-of-Thought (CoT) annota-
tions (Wei et al., 2022). As shown in Figure 1, a

* indicates equal contribution, † indicates corresponding
author

1Code: https://github.com/lqtrung1998/mwp_ReFT

Supervised Fine-Tuning

Model

Question (x): Weng earns $12 an hour for babysitting. Yesterday, she just did
50 minutes of babysitting. How much did she earn?

Chain-of-Thought (e): We need to calculate her hourly rate and then multiply
it by the amount of time she worked. First, we need to convert 50 minutes to
hours. There are 60 minutes in an hour, so 50 minutes is equal to 50/60 = 5/6
hours. Next, we can calculate Weng's earnings by multiplying her hourly rate
by the amount of time she worked:  $12/hour x 5/6 hour = $10. Therefore,
Weng earned $10 for 50 minutes of babysitting. The answer is 10.

Answer (y): 10
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Figure 1: An example of question (x), CoT (e), and
answer (y) in GSM8K (Cobbe et al., 2021a). The SFT
process iterates several epochs on the training data. The
proposed ReFT warm-up from SFT and performs RL
training on the same data.

CoT annotation outlines the intermediate reasoning
steps toward solving a math problem.

Usually there is one CoT annotation for each
question in the training data, i.e., one correct rea-
soning path, which is utilized in SFT. We observe
that this may result in relatively weak generaliza-
tion abilities of the SFT models. It is often the case
that multiple valid CoT annotations exist for the
same question (Cobbe et al., 2021a; Zhang et al.,
2023), underscoring the need for a more power-
ful fine-tuning approach. To address this problem,
we propose a simple yet effective approach called
Reinforced Fine-Tuning (ReFT) (Figure 1 bottom).

ReFT commences with a warm-up stage involv-
ing Supervised Fine-Tuning (SFT) in one or two
epochs (Figure 1, shaded box). This initial stage
equips the model with the ability to generate cor-
rect responses to mathematical problems to some
extent, as demonstrated in prior work (Cobbe et al.,
2021a). Next, ReFT proceeds to further refine the
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Figure 2: Comparison between SFT and ReFT on the
presence of CoT alternatives.

model through the utilization of an online Rein-
forcement Learning (RL) algorithm (Sutton and
Barto, 2018), specifically Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017) in this pa-
per. In this way, ReFT is able to sample multiple
correct reasoning paths or CoT annotations and
learn from them (Figure 2, right).

Since the training data include ground-truth an-
swers, the golden rewards can be naturally derived
from them when training PPO. Consequently, there
is no requirement for a separately trained reward
model. In contrast, RLHF (Ouyang et al., 2022)
has to utilize a reward model that is learned from
human-labeled data.

During the warm-up stage, ReFT acquires a cer-
tain level of accuracy by supervised learning. In
the RL stage, ReFT further enhances its ability by
reinforcement learning through sampling various
CoT reasoning paths. In this way, ReFT gets much
richer supervision signals than SFT. This approach
enables ReFT to greatly improve generalization in
math problem-solving (Gao et al., 2018; Brown
et al., 2020). Note that ReFT outperforms SFT by
using the same training questions, without relying
on extra or augmented training questions. In fact,
ReFT does not conflict with such data engineering
and can be seamlessly combined with it.

Our contributions are as follows:

• We introduce a novel fine-tuning approach, re-
inforced fine-tuning (ReFT), which utilizes re-
inforcement learning to solve math problems.
ReFT exhibits enhanced generalization capa-
bilities compared to conventional supervised
fine-tuning when trained on the same dataset.

• We conduct extensive experiments using two
foundational models, CodeLLAMA (Roziere
et al., 2023) and Galactica (Taylor et al., 2022),
on three standard datasets: GSM8K (Cobbe
et al., 2021a), MathQA (Amini et al., 2019),
and SVAMP (Patel et al., 2021). Our ex-
periments cover both natural language and

program-based CoTs, demonstrating the sig-
nificantly improved performance and general-
ization ability of ReFT.

• Additionally, we demonstrate that ReFT ben-
efits from both majority voting (Wang et al.,
2023b) and reward model reranking (Uesato
et al., 2022) at inference-time, further improv-
ing its performance.

2 Related Work

Math Problem Solving Recent research efforts
focus on CoT prompt design and data engineer-
ing. Most of them attempted to make CoT com-
prehensive and fine-grained to present the step-
by-step reasoning solutions (Nye et al., 2021; Fu
et al., 2023; Zhou et al., 2023b; Khot et al., 2023;
Zelikman et al., 2022; Imani et al., 2023; Miao
et al., 2023). Gao et al. (2023) further proposed to
use the Python program as CoT prompt, demon-
strating more accurate reasoning steps and sig-
nificant improvements over the natural language
CoT (Wei et al., 2022). Zhou et al. (2023a) intro-
duced a prompting method that generates code to
verify the intermediate reasoning step with GPT-
4 (OpenAI, 2023), thus achieving state-of-the-art
performance on GSM8K (Cobbe et al., 2021a)
and MATH (Hendrycks et al., 2021). Another
line of work focuses on improving the quality of
CoT (Wang et al., 2023a; Liu et al., 2023; Yu et al.,
2023) and increasing the amount of CoT data (Luo
et al., 2023; Yue et al., 2023) from OpenAI’s Chat-
GPT (gpt-3.5-turbo) or GPT-42.

Reinforcement Learning Our work is mostly
related to the recent work that applies PPO (Schul-
man et al., 2017) to natural language process
for aligning human preferences (Ouyang et al.,
2022). Since then, several training algorithms
have been proposed to efficiently improve the
alignment, including direct preference optimiza-
tion (DPO) (Rafailov et al., 2023), identity pref-
erence optimization (IPO) (Azar et al., 2023),
and Kahneman-Tversky optimization (KTO) (Etha-
yarajh et al., 2023). Other than the purpose of
alignment, we aim to adopt reinforcement learning
as a fine-tuning paradigm to improve performance
over conventional supervised fine-tuning.

Specifically for solving math problems, Uesato
et al. (2022) and Lightman et al. (2023) trained an
outcome-based or process-based reward model to

2https://chat.openai.com/

https://chat.openai.com/


perform reranking (Cobbe et al., 2021a) to achieve
much better performance over SFT and majority
voting (Wang et al., 2023b). While our approach
aims to improve the performance of the policy it-
self, these reward model reranking approaches can
be easily integrated into the resulting policy model.

3 Method

In this work, we focus on natural language CoT
(N-CoT) (Wei et al., 2022) (Figure 1) and program-
based CoT (Gao et al., 2023) (P-CoT) using
Python. Gao et al. (2023) proposed the program-
based CoT for math problem solving. We can
simply execute the program to obtain the answer.
To ensure clarity and avoid ambiguity, we use the
terms N-CoT and P-CoT to represent natural lan-
guage and program-based CoTs, respectively.

3.1 Reinforced Fine-Tuning

The proposed Reinforced Fine-Tuning (ReFT) pro-
cess consists of two stages: the warm-up stage and
the reinforcement learning stage. The overall algo-
rithm is shown in Algorithm 1.

Warm-up In this stage, the policy is fine-tuned
for a few epochs on a dataset comprising of the
“(question, CoT)” tuples: (x, e). It enables the
model to have basic problem-solving skills to gen-
erate a proper response3. Formally, the CoT genera-
tion process can be decomposed into a sequence of
next token prediction actions. The last action token,
<eos>, signals the generation process to terminate.
The CoT e is written as:

e = [a1, a2, ..., aL−1, aL=<eos>]

where L represents the maximum length. At
timestep t, the action at is sampled from a policy
πθ(·|st) where at can be any token in the vocabu-
lary and the state st comprises of all tokens in the
question and all tokens generated so far. After each
action, the resulting state st+1 is the concatenation
of the current state st and the action at:

st+1 =

{
x, t = 0

[st, at], 1 ≤ t ≤ L
.

As the produced action is the <eos> token, the
resulting state sL+1 is the terminal state and the

3The underlying concept is similar to the verifier train-
ing (Cobbe et al., 2021a) to generate multiple solutions.

generation process is finished. With this notation,
the loss function for a sample can be written as:

LSFT (θ) = −Ee∼D

[
L∑

t=1

log (πθ(at|st))

]
(1)

Reinforcement Learning In this stage, the pol-
icy improves its performance via a form of online
self-learning using a dataset comprising of (ques-
tion, answer) tuples: (x,y). Specifically, the pol-
icy model learns by repeatedly sampling responses
(Figure 2), evaluating the response’s answer cor-
rectness, and updating its parameters in an online
fashion (line 7-14 in Algorithm 1). We employ
PPO (Schulman et al., 2017) with a clipped ob-
jective algorithm for training. Following Ziegler
et al. (2019), the value model Vϕ is constructed
by appending a linear value head on top of the
last hidden states of the policy model πθ, which is
the model after the warm-up stage. The reward of
0 is given for all action resulting in non-terminal
state. At the terminal state, we use a reward func-
tion that directly compares the answer extracted
from the state’s CoT and the ground-truth answer
y . Here, the reward function returns 1 if the an-
swer is deemed correct, otherwise 0 is returned.
On dataset whose answers are all numeric, partial
reward (Zhong et al., 2017; Le et al., 2022) of 0.1
can be applied when the answer can be extracted
and it is of numeric type. For 1 ≤ t ≤ L, we write

r(st, at, st+1)=


1, EXTRACT(st+1) = y

0.1, EXTRACT(st+1) ̸= null, ̸= y

0, EXTRACT(st+1) = null

Such a partial reward can help reduce the effect
of learning from sparse reward (Riedmiller et al.,
2018; Trott et al., 2019). In addition, following
Zheng et al. (2023), our total reward is the sum
of the reward function score and the Kullback-
Leibler (KL) divergence (Kullback and Leibler,
1951) between the learned RL policy and initial
policy scaled by a coefficient factor β.

rtotal(st,at, st+1) = r(st, at, st+1)

− βKL
(
πθ(·|st),π

(0)
θ (·|st)

)
The generalized advantage estimate (Schulman
et al., 2018) is used for advantage calculation:

Ât =

L−t∑
l=0

(γλ)lδt+l,



Algorithm 1: Reinforced Fine-Tuning
Input: Dtrain = {(x, e,y)}: Tuples of (question, CoT, answer), W : number of warm-up steps, T :

number of RL steps, U : number of updates per RL step, π(0)
θ : Initial policy.

Output: πθ: Final policy
1 πθ = π

(0)
θ

2 // Warm-up stage
3 for i← 1 to W do
4 x, e,y ∼ Dtrain // Sample mini-batch from Dtrain

5 θ = OPTIMIZATION_STEP(LSFT (θ)) // Equation 1

6 // Reinforcement learning stage
7 for i← 1 to T do
8 x, _,y ∼ Dtrain // Sample mini-batch without CoT
9 ê ∼ πθ(x) // On-policy CoT sampling

10 ŷ ← EXTRACT(ê) // Extract the answer from CoT
11 πθold ← πθ, Vϕold ← Vϕ

12 Compute δt, Ât, R̂t using πθold , Vϕold ,x, ê, ŷ and y
13 for j ← 1 to U do
14 θ,ϕ = OPTIMIZATION_STEP(LRL(θ,ϕ)) // Equation 2

15 return πθ

where the Temporal Difference (TD) is defined as

δt′ = −Vϕ(st′)+rtotal(st′ , at′ , st′+1)+γVϕ(st′+1)

with the terminal state value Vϕ(sL+1) := 0, λ ∈
(0, 1] is the discount factor for rewards, and γ ∈
[0, 1] is the discount factor for TD. For the estimate
of return, we leverages the λ-return R̂t, which can
be written as the sum of the generalized advantage
estimate and the value estimate:

R̂t = Ât + Vϕ(st)

Lastly, the policy and value objectives can be writ-
ten as in two equations below

Lpolicy(θ) = −Ee∼πθold

[
min

(
πθ(at|st)
πθold(at|st)

Ât,

clip
(

πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ

)
Ât

)]

Lvalue(ϕ) =
1

2
Ee∼πθold

[
max

(∥∥∥Vϕ(st)− R̂t

∥∥∥2 ,
∥∥∥clip

(
R̂t − Vϕ(st), Ât − ϵ, Ât + ϵ

)∥∥∥2)]
where πθold , Vϕold are used for sampling CoT and
computing Ât, R̂t. The unified loss function is the
weighted sum of the above objectives.

LRL(θ,ϕ) = Lpolicy + αLvalue (2)

where α is the coefficient for the value objective.

4 Experiments

4.1 Datasets

We conduct experiments on three math prob-
lem datasets: GSM8K (Cobbe et al., 2021a),
SVAMP (Patel et al., 2021) and MathQA (Amini
et al., 2019). For both GSM8K and SVAMP, the
format of answers is a numeric value. In MathQA,
the format is instead a list of multiple choices (i.e.,
ABCD). Table 1 presents the statistics of all datasets.
We perform few-shot prompting (Wei et al., 2022;
Gao et al., 2023) using GPT-3.5-turbo to obtain
both the N-CoT and P-CoT annotations4. The N-
CoT and P-CoT annotations are obtained following
Jie et al. (2023). We also conducted an additional
experiment on a numeric version of MathQA (Jie
and Lu, 2023) where the format is also a numeric
value. Such experiments are used to demonstrate
our assumptions of potential reward hacking phe-
nomenon (Skalse et al., 2022) on MathQA (§4.4).

4.2 Baseline

We compare ReFT with SFT and self-training (Xie
et al., 2020; Amini et al., 2022) baselines. SFT
simply fine-tunes the language model on the train-

4Examples of N-CoT and P-CoT representations can be
found in Appendix A.



GSM8k SVAMP MathQAMCQ MathQAnumeric

Train N-CoT 7,465 3,076 14,862 8,955
Train P-CoT 7,356 3,043 15,250 7,672

Test 1,319 1,000 01,605 1,605

Table 1: Statistics of the train and test datasets.

ing data. Experiments with self-training methods
ensure a relatively fair comparison because these
methods share the mechanism that the samples gen-
erated from the model are used for training.

We implemented Offline Self-Training (Offline-
ST) (He et al., 2020), and Online (Hoi et al., 2021)
Self-Training (Online-ST). The Offline-ST method
is similar to expert iteration (Anthony et al., 2017;
Uesato et al., 2022; Zelikman et al., 2022). We first
use the SFT checkpoint from the early checkpoint
to sample the CoTs and verify them against the
ground truth. We only retain those expert samples
that have a correct answer. We perform SFT on
the combination of original training data and the
expert samples.

The Online-ST method is made to be closely
comparable to ReFT. Following ReFT, Online-ST
has the same warm-up process. After that, we per-
form continual training with the samples generated
on the fly. At each training step, the model first
samples CoTs for a batch and only retains those
with correct answers. The resulting batch consists
of both sampled and ground-truth CoTs. We then
update the model parameters on this batch with
the supervised fine-tuning objective LSFT . Com-
pared with ReFT, Online-ST neither makes use of
negative responses (with an incorrect answer) nor
has a dedicated mechanism to prevent the model
from significantly diverging from the initial model,
which can manifest as task-specific overfitting and
training instability.

4.3 Experimental Setup
We conduct experiments with two foundation mod-
els: Galactica-6.7B5 (Taylor et al., 2022) and
CodeLLAMA-7B67 (Roziere et al., 2023). Both
models are reported to have strong performance in
math solving and are commonly adopted in recent
literature on reasoning tasks (Yue et al., 2023; Luo

5huggingface.co/facebook/galactica-6.7b
6huggingface.co/codellama/CodeLlama-7b-hf
7Additional preliminary experiments were conducted us-

ing Gemma (GemmaTeam, 2024). However, these results
are not included in the current version of this paper due to
unresolved implementation issues that align with known chal-
lenges reported within the open-source community (https:
//huggingface.co/google/gemma-7b/discussions).

et al., 2023).
In addition to the comparison with baselines,

we also apply common techniques, majority vot-
ing (Wang et al., 2023b) and reward model rerank-
ing (Lightman et al., 2023) on GSM8K.

Hyper-parameters In all experiments, the train-
ing is done with 8 A100-80GB GPUs using Deep-
Speed (Rajbhandari et al., 2020; Rasley et al., 2020)
Zero stage 2 and HuggingFace Accelerate (Gugger
et al., 2022). During the warm-up stage of ReFT,
we use AdamW (Loshchilov and Hutter, 2017) op-
timizer with 10% warm-up ratio. The batch size is
48 and learning rate is 1e-5. The maximum length
is set to 1024. The number of epochs in the warm-
up stage is 2 in all settings except on MathQAMCQ
and MathQAnumeric where we use up to 5 and 10
respectively. The model is trained for 300 epochs
with a learning rate of 3e-7. Following Ziegler et al.
(2019), the λ, γ, α, ϵ and U in PPO are set to 1,
0.95, 5, 0.2, and 2, respectively. The KL coefficient
β is set to 0.01 for P-CoT and is set to 0.05 for N-
CoT experiments. Further hyperprameter settings
about ReFT can be found in Appendix B.

For SFT baseline, we train the model for 40
epochs and choose the checkpoint with best perfor-
mance. This number of epochs has been chosen
to be sufficiently large to ensure SFT converges.
For Offline-ST baseline, we sample the CoTs by
using the checkpoint from the ReFT warm-up stage.
Using the generation temperature of 1.0 and max
length of 1024, we sample 100 CoTs for each
question and only keep those with a correct an-
swer. Following Singh et al. (2023), we then sub-
sample the CoTs to 10 random unique CoTs per
question to balance difficulties of questions. The
number of fine-tune epoch is set to 20, which is
sufficiently large to ensure the training to converge.
As mentioned in §4.2, the Online-ST baseline tries
to mimic the same setting as in ReFT. We have
the same warm-up process and the hyperparameter
setting is roughly the same as ReFT.

Reward Model Reranking Following (Cobbe
et al., 2021a; Uesato et al., 2022), we train a reward
model (RM) to determine the correctness of the
CoT. To construct the RM training data, we use
the model from the warm-up stage and perform
sampling to obtain 100 CoTs for each question in
the training set. The CoTs are deduplicated and
the binary labels can be obtained by comparing the
extracted answer against the ground truth.

As a common practice, the reward model is a

https://huggingface.co/facebook/galactica-6.7b
https://huggingface.co/codellama/CodeLlama-7b-hf
https://huggingface.co/google/gemma-7b/discussions
https://huggingface.co/google/gemma-7b/discussions


Method Size GSM8K SVAMP MathQAMCQ Average
N-CoT P-CoT N-CoT P-CoT N-CoT P-CoT N-CoT P-CoT

Galactica + SFT 6.7B 42.68 58.83 54.50 70.09 58.07 64.61 51.75 64.51
Galactica + Offline Self-Training 6.7B 42.60 60.72 57.90 72.30 60.75 67.04 53.75 66.69
Galactica + Online Self-Training 6.7B 47.84 62.93 59.40 74.59 59.38 61.24 55.54 66.25
Galactica + ReFT 6.7B 48.14 68.91 61.40 74.09 58.13 70.47 55.89 71.16

CodeLLAMA + SFT 0.7B 43.59 63.68 58.09 75.40 56.01 64.79 52.56 67.96
CodeLLAMA + Offline Self-Training 0.7B 45.10 68.00 60.20 77.69 59.81 68.53 55.04 71.41
CodeLLAMA + Online Self-Training 0.7B 44.66 67.85 58.60 77.40 56.95 68.85 53.40 71.37
CodeLLAMA + ReFT 0.7B 53.30 75.28 64.50 79.19 60.13 71.83 59.31 75.43

Table 2: Value accuracy of ReFT and the baselines fine-tuned with two foundation models on all datasets.

language model that is initialized from the best
SFT checkpoint (Cobbe et al., 2021a; Ouyang et al.,
2022). Similar to the outcome-based reward model
(ORM) (Uesato et al., 2022), the reward model is
trained to predict a binary label that indicates the
“correct” or “incorrect” solution. Once the input
passes through the reward model, classification is
conducted with a linear classifier on the hidden
state of the last token. Finally, the solution with
the highest “correct” score among the candidates
is selected as the final answer. We train the RM
model for 3 epochs using a batch size of 24, the
maximum length of 700 and a linear learning rate
schedule with 10% warm-up period and the max
learning rate of 1e−6.

Evaluation We report value accuracy for both
N-CoT and P-CoT on all datasets. For majority vot-
ing and reranking (Table 4), we sample 100 CoTs
for evaluation. In voting, the valid answer with
majority counts is chosen as the final answer for
computing accuracy. In reranking, we choose the
CoT with the highest score and extract the answer.

4.4 Results

ReFT Outperforms SFT Table 2 compares the
performance among the baselines and proposed
ReFT on GSM8K, SVAMP, and MathQA datasets.
We can observe that ReFT consistently achieves
much better performance over the SFT except on
MathQAMCQ N-CoT. Specifically, we have closed
to 10-point and 12-point improvement over SFT
with CodeLLAMA on GSM8K N-CoT and P-CoT,
respectively. On average, we achieve 6.7-point and
7.4-point improvements with CodeLLAMA on all
datasets in N-CoT and P-CoT, respectively. No-
tably, no additional annotations or reward models
are used in ReFT. Such strong results demonstrate
robust generalization of ReFT (see Analysis §5)
and huge potential for further exploring the training

Question: The diagonals of a rhombus are 18 cm and 22 cm. Find
its area?
A) 277, B) 266, C) 198, D) 288, E) 212C) 198

Generated CoT: To find the area of a rhombus, we need to multiply
the lengths of its diagonals and divide the result by 2.
Area of rhombus = (Product of diagonals) / 2
Area of rhombus = (18 cm x 22 cm) / 2
Area of rhombus = 344 cm2 / 2
Area of rhombus = 172 cm2

Therefore, the answer is: C

Figure 3: Example prediction of MathQAMCQ reveals
reward hacking.

N-CoT Galactica CodeLLAMA

SFT 40.08 37.32
Offline Seft-Training 44.23 41.24
Online Seft-Training 43.78 38.06
ReFT 45.23 42.24

Table 3: Value accuracy of ReFT and the baselines with
two foundation models on MathQAnumeric benchmark

data with reinforcement learning (Lu et al., 2023).
Offline self-training includes the sampling data

from the initial policy for fine-tuning. We can see
this simple baseline can improve the performance
compared with SFT (He et al., 2020; Gulcehre et al.,
2023) but the improvements are far behind the one
made by ReFT. Such comparisons indicate that
“exploring” is essential in ReFT to have good per-
formance. Though online self-training achieves
some more improvements with Galactica, it is still
far behind ReFT on average. This result indicates
that incorrect instances are also very essential to
guide the model for better exploration. Compar-
isons with self-training also suggest the proposed
approach with on-policy sampling and reinforce-
ment learning is better than standard data augmen-
tation approaches.

Reward Hacking for MathQA Our investiga-
tion of the negative results on MathQAMCQ in-



Method Size GSM8K Extra SFT
N-CoT P-CoT Data

Galactica + SFT + Voting 6.7B 52.8 62.9

Galactica + ReFT + Voting 6.7B 58.5 71.8

Galactica + SFT + Reranking 6.7B 57.5 73.4

Galactica + ReFT + Reranking 6.7B 59.2 76.4

CodeLLAMA + SFT + Voting 0.7B 53.5 68.0

CodeLLAMA + ReFT + Voting 0.7B 63.2 78.0

CodeLLAMA + SFT + Reranking 0.7B 62.9 77.0

CodeLLAMA + ReFT + Reranking 0.7B 66.0 81.2

Other Foundation Models †
WizardMath (Luo et al., 2023) 07B 54.9 - (096k)
WizardMath (Luo et al., 2023) 13B 63.9 - (096k)
MathCoder (Wang et al., 2023a) 07B 67.8 - (080k)
MAmmoTH-Coder (Yue et al., 2023) 07B 22.2 58.8 (260k)
MAmmoTH-Coder (Yue et al., 2023) 70B 72.4 76.7 (260k)
DeepSeekMath (Shao et al., 2024) 07B 88.2 86.7 (776k)

GPT-3.5-turbo (Jie et al., 2023) N.A. 75.3 78.0 N.A.
GPT-4 (OpenAI, 2023; Zhou et al., 2023a) N.A. 93.0 97.0 N.A.

Table 4: Solving accuracy of majority voting and reward
model reranking for SFT and ReFT on GSM8K. We also
include existing approaches for comparison.

dicates that ReFT suffers from the reward hack-
ing (Skalse et al., 2022) on the multi-choice ques-
tion during training. Figure 3 shows how the
sampled solutions produce “inaccurate rewards”,
which makes the RL training suffer. As we can
see, the sampled CoT obtains an incorrect answer
“172” which is not half of the product of “18” and
“22”. However, the final reasoning step still pre-
dicts the option “C” as the final answer as the
model would always predict one of the options
from {A, B, C, D, E} regardless of the correct-
ness of intermediate CoT8. Thus, such a misleading
CoT will receive a positive reward “1” and mis-
guide the model to treat this as a correct CoT. The
underlying reward hacking phenomenon severely
tampers the model training (Everitt et al., 2021).
This is also the reason that we chose the checkpoint
with longer warm-up steps for MathQA N-CoT to
reduce the reward hacking effect.

To further demonstrate the negative effect of
MCQ questions, we experiment on the MathQA
variant by Jie and Lu (2023), MathQAnumeric (Ta-
ble 1), which removes the options in the question,
and directly predicts the numeric answer. Table 3
presents the comparison against the baselines. We
can observe that ReFT consistently outperforms the
baselines using both Galactica and CodeLLAMA.
Ideally, we could reduce the reward hacking ef-
fect on MathQAMCQ if we can obtain a more fine-
grained reward (e.g., process-based reward (Light-
man et al., 2023)) for the intermediate reasoning
steps. However, the development of a reliable

8We found that program-based CoTs are less likely to
suffer as it is more rigorous than natural language.

Method GSM8K SVAMP MathQAMCQ

Galactica-125M + SFT 23.7 35.6 58.4
Galactica-125M + ReFT 29.8 39.4 60.7

Codeparrot-small + SFT 13.8 25.7 55.3
Codeparrot-small + ReFT 16.8 27.4 58.3

Codegen-350M + SFT 20.4 34.4 56.4
Codegen-350M + ReFT 28.4 39.3 59.1

Table 5: Experiments on P-CoT with Galactica-125M,
Codeparrot-small and Codegen-350M.

process-based reward model is expensive, and re-
quires extensive manual annotations of reasoning
steps. Recognizing these challenges, we consider
controlling reward hacking and its analysis as an
important problem to be addressed in future work.

Majority Voting and Reranking Benefit ReFT
Following Wang et al. (2023b); Uesato et al. (2022);
Lightman et al. (2023), we also perform major-
ity voting and reward model reranking to show
that ReFT can benefit from these common tech-
niques. Specifically, we perform sampling from
both SFT and ReFT policies. We sample 100 CoT
solutions for each question and employ the reward
model described in §4.3 to perform reranking. Re-
sults in Table 4 demonstrate that ReFT consistently
achieves the best performance on GSM8K by re-
ward model reranking. ReFT + Voting significantly
outperforms SFT + Voting by 8.6 points on average
across all settings. ReFT with reranking outper-
forms SFT with reranking by more than 3 points.

Compared with existing open-source ap-
proaches (Luo et al., 2023; Wang et al., 2023a;
Yue et al., 2023) (Table 4 bottom9), our best
P-CoT variant achieves the best performance
with accuracy 81.2 on GSM8K. In addition, these
approaches mainly include extra data generated
from ChatGPT and perform distillation during
fine-tuning. In contrast, we improve the policy
itself by exploiting the potential of existing
training data and pushing the limit of the policy
performance. Our best result reported in Table 4,
i.e., the CodeLLAMA + ReFT + Reranking with
P-CoT setting, even surpasses GPT-3.5-turbo.
However, we obtain the result with a model that is
only in the size of 7B.

Experiments with Small Model Intuitively, ex-
ploration could lead to imperfect demonstration

9Numbers are taken from original papers. The N-CoT and
P-CoT results for MAmmoTH-Coder are reported in their
appendix.
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Figure 4: Training reward of ReFT, evaluation accuracy, KL against training epoch on GSM8K P-CoT.

Model Setting Accuracy

CodeLLAMA + ReFT 75.28
– remove partial reward 74.40
– KL coefficient β = 0 collapse
– non-shared value model 75.15

Table 6: Ablation study on GSM8K P-CoT.

with a small language model. We conduct an ex-
periment on P-CoT data using Galactica-125M10,
Codeparrot-small11 and Codegen-350M12. Table 5
shows the performance comparison between SFT
and ReFT. Surprisingly, ReFT still outperforms
SFT on three datasets. Such improvements demon-
strate the robustness of ReFT during the explo-
ration of reasonable programs.

Ablation Study We perform the ablation study
using CodeLLAMA on GSM8K P-CoT (Table 6).
Without the partial reward, ReFT obtains a lower
accuracy 74.4 but it is still much better than SFT.
As mentioned in §3.1, such a partial reward can
help reduce the effect of sparse reward (Trott et al.,
2019) during training. In addition, the policy distri-
bution will easily collapse to produce unexpected
results (i.e., 0 accuracy) if we set the KL coefficient
β to 0. It is certainly critical to impose constraints
on the space that the policy explores (Ouyang
et al., 2022). The initial warm-up step essentially
makes such constraints and allows the policy to
further explore within the range that is governed
by β. We also experiment with a separate value
model (Andrychowicz et al., 2021; Cobbe et al.,
2021b), where the torso parameters are initialized
the same as the policy model. We found that such
a setting allows the policy to converge faster in
early RL training, but eventually reaches an on par
performance. Compared to the original setting of a
shared value model, it is, however, twice the com-

10huggingface.co/facebook/galactica-125m
11huggingface.co/codeparrot/codeparrot-small
12huggingface.co/Salesforce/codegen-350M-mono

putation overhead due to one extra forward-pass,
as well as twice the memory cost due to the storage
of the separate value net. Finally, in Appendix C
we give a case study to show how the generated
P-CoT evolve for SFT and ReFT.

5 Analysis

Generalization Figure 4 shows the mean reward,
evaluation accuracy, and the KL divergence dur-
ing training of ReFT13 on GSM8K P-CoT using
CodeLLAMA as foundation model. SFT converges
and becomes overfiting when approaching 40th

epoch. However, we can see the mean reward is
around 80% to 90% for the ReFT policy at 40th

epoch, and the value accuracy is also increasing. In
addition, we can see that the KL divergence (Figure
4 (c)) is very large in the beginning and then main-
tains a reasonable value between 0 and 10. The
stable KL divergence indicates our policy performs
exploration within a space that contains appropri-
ate programs. The underlying reinforcement learn-
ing mechanism greatly improves the generalization
ability of ReFT (Brown et al., 2020).

Qualitative Evaluation We perform a human
evaluation to qualitatively assess the output from
the SFT model, Warmup checkpoint, and ReFT
model. The evaluation uses 50 questions and sam-
ples the solutions in GSM8K test set that can be
solved correctly by all three models. We ask four
different annotators to score the reasoning path ac-
cording to the following criteria, each scored on a
scale from 0 to 1.

• Logic: evaluates if the logic leading to the an-
swer is correct.

• Naming: evaluates if the variable conveys ap-
propriate and reasonable semantics

• Compactness: evaluates if the reasoning paths
contain redundant information.

13For illustration purpose, we only shows the mean reward
and KL for 60 epochs.

https://huggingface.co/facebook/galactica-125m
https://huggingface.co/codeparrot/codeparrot-small
https://huggingface.co/Salesforce/codegen-350M-mono


Method Logic Naming Compactness Overall Score

SFT 0.986 0.988 0.994 2.967
Warmup 0.949 0.982 0.990 2.920
ReFT 0.992 0.990 0.996 2.982

Table 7: Qualitative scores of models from three meth-
ods trained on GSM8k P-CoT dataset.

A perfect score of 3 indicates good performance
across these three dimensions. To ensure the evalu-
ation is impartial and faithful, we strictly follow the
setting: (1) The origin of each reasoning path (from
SFT, Warmup, or ReFT) is anonymized to prevent
annotator bias. (2) Four different annotators are
responsible for different portions of the samples.

As seen in table 7, though the overall scores are
quite close, ReFT performs slightly better than SFT,
and outperforms the Warmup variant. Note that
SFT is inherently trained to learn from the ground
truth, thus, it is likely to have a high score. This
comparative analysis underscores the robustness
of ReFT in generating accurate and semantically
coherent reasoning paths.

When ReFT surpasses SFT? To further investi-
gate the relationship between ReFT and SFT, we
perform ReFT training with different number of
warm-up steps from SFT. Figure 5 shows the value
accuracy of different ReFT variants against SFT14.
Specifically, if the warmup step is 3, that means
the policy initialize from the 3rd-epoch SFT check-
point. We can see that the performance of all ReFT
policies decreases right after the warm-up in the
beginning, until the training epoch reaches around
8. Because the linear layer in the shared value
model is randomly initialized, and it could take a
few epochs to adjust the distribution. Starting from
the 30th epoch, SFT converges and all ReFT vari-
ants are still improving. We can also see that all
variants outperform SFT by a significant margin
and there is no obvious advantage of any specific
ReFT variant.

6 Conclusion

We have introduced reinforced fine-tuning (ReFT)
as a new method for fine-tuning models to solve
math problems. In contrast to SFT, ReFT optimizes
a non-differentiable objective by exploring multi-
ple CoT annotations in the search for the correct
answer, rather than relying on a single annotation.

14We only show 60 epochs for illustration purposes. The
performance for the later epoch is shown in Figure 4 (b).
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Figure 5: Accuracy comparison between SFT and ReFT
with different number of warm-up epoch.

Through extensive experimentation on three
datasets using two foundation models, we have
demonstrated that ReFT outperforms SFT in terms
of performance and generalization ability. More-
over, we have showcased the compatibility of mod-
els trained with ReFT with techniques such as ma-
jority voting (Wang et al., 2023b) and reward model
reranking (Cobbe et al., 2021a; Uesato et al., 2022).

Furthermore, ReFT has exhibited superior per-
formance compared to several publicly available
open-source models of comparable sizes in math
problem-solving. This demonstrates the effective-
ness and practical value of the ReFT approach.

7 Future Work

We have made the first attempt of applying re-
inforcement learning, specifically the PPO algo-
rithm (Schulman et al., 2017), to fine-tune of LLMs
for math problem-solving. Our future work in-
cludes utilization of offline reinforcement learn-
ing techniques (Levine et al., 2020; Gulcehre
et al., 2023), development of a warm-up free
method to enhance training efficiency and perfor-
mance, thereby reducing the gap with the rerank-
ing method. Additionally, Lightman et al. (2023)
suggests that a well-trained process-based reward
model (PRM) can significantly enhance perfor-
mance. Hence, it would be worthwhile to explore
the implementation of process-based rewards in
reinforcement learning training. Lastly, as ReFT is
a versatile approach, we intend to apply it to more
general reasoning tasks where the inference can be
formalized with CoT.



Limitations

Training Efficiency As depicted in Figure 4 (b),
it is evident that ReFT necessitates a greater num-
ber of epochs to reach convergence compared to
SFT. This is primarily due to the fact that ReFT op-
timizes a non-differentiable objective and requires
exploration of the generation space to attain correct
answers. While a larger learning rate may expe-
dite convergence, it also makes the policy more
susceptible to instability and potential collapse. Al-
ternatively, using a larger batch size is a viable op-
tion; however, it comes at the expense of increased
computational costs.

Reward Hacking Our reward function relies
solely on the final answer to determine the reward.
However, as demonstrated in the experiments con-
ducted on the MathQAMCQ N-CoT dataset, the pol-
icy can be easily manipulated if the possible space
of final answers is limited, such as A,B,C,D. To
mitigate the issue of reward hacking, it may be nec-
essary to employ a more detailed or process-based
reward function that takes into account a broader
range of factors.
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Question: Weng earns $12 an hour for babysitting. Yesterday, she
just did 50 minutes of babysitting. How much did she earn?

N-CoT: We need to calculate her hourly rate and then multiply it by
the amount of time she worked.

First, we need to convert 50 minutes to hours.

There are 60 minutes in an hour, so 50 minutes is equal to 50/60 =
5/6 hours.

Next, we can calculate Weng’s earnings by multiplying her hourly
rate by the amount of time she worked:

$12/hour x 5/6 hour = $10.

Therefore, Weng earned $10 for 50 minutes of babysitting.

The answer is 10.

P-CoT:
def solution():

"""Weng earns $12 an hour for babysitting. Yesterday, she just did
50 minutes of babysitting. How much did she earn?"""

hourly_rate = 12
minutes_worked = 50
hours_worked = minutes_worked / 60
earnings = hourly_rate * hours_worked
result = earnings
return result

Figure 6: N-CoT and P-CoT examples on GSM8K

A Examples of N-CoT and P-CoT
Representations

We present examples of natural language CoT and
program-based CoT from GSM8K dataset in Fig-
ure 6. We follow Jie et al. (2023) to perform few-
shot prompting and obtain the CoT representations.
The natural language CoT is generally the same
as the one presented in Wei et al. (2022). The for-
mat program-based CoT is similar to the one in
PAL (Gao et al., 2023), where we use a function
to solve the problems. The function starts with a
Python docstring that repeats the question and then
a list of statements as reasoning steps.

B Detailed Hyperparameter Setting

Supervised Fine-Tuning We train the model for
40 epochs with the batch size of 48 and the max-
imum length of 1024.. For small models, we in-
crease the learning rate to 2e-5, and the number of
epoch for training MathQAMCQ to 100 epochs.

ReFT Warm-up We perform warm-up for 2
epochs on GSM8K, SVAMP for both N-CoT
and P-CoT. For MathQAMCQ, we perform warm-
up for 5 epochs on MathQAMCQ N-CoT and 2
epochs on MathQAMCQ P-CoT. Specifically for
MathQAnumeric, we perform warm-up for 10 epochs
because this dataset is much harder and the number
of reasoning chains is longer than other datasets.
For Galactica-125m and Codegen-350M, the warm-

up period is 10 epochs for GSM8K and SVAMP
and is 40 epochs for MathQAMCQ. For Code-parrot,
we increases the warm-up period to 40 epochs on
all datasets to obtain reasonable warm-up perfor-
mance.

ReFT RL The maximum length for question is
set to 300, and the maximum length during sam-
pling is set to 700. The batch size is 32, which is
smaller than SFT due to extra memory consump-
tion of the value model. The number of updates per
RL step (i.e., ppo epoch) is set to 2 (Ziegler et al.,
2019). We do not employ any weight decay and
dropout following Ziegler et al. (2019). For small
models, we train for 700 epochs with the learning
rate of 3e-6, the global batch size of 256 and the
α of 5, 1 and 0.1 for Galactica-125m, Codeparrot-
small and Codegen-350M model respectively.

C Case Study

We show how SFT and ReFT evolve by investi-
gating the generated P-CoT for a specific question.
Figure 7 reports the responses of SFT and ReFT at
checkpoint epoch 1, 3 and 5. At epoch 1, ReFT is
in warmup stage so that its generated P-CoT looks
similar to that of SFT. However, later at epoch 3
and 5, the P-CoTs differ. ReFT responses becomes
shorter and correct while SFT reponses remains
incorrect.

D Attempts with DPO and IPO

In addition to the PPO algorithm in this work, we
initially experimented with DPO (Rafailov et al.,
2023) and IPO (Azar et al., 2023) in our early
attempts on the GSM8K dataset. We obtained
the preference data by sampling from the warmup
checkpoint and adapted the implementation of
these algorithms from the Transformer Reinforce-
ment Learning (TRL) framework (von Werra et al.,
2020). Preliminary results indicate that their perfor-
mance is on par with the "Offline Self-Learning"
baseline on GSM8K. This could be explained by
the following reasons. Being offline methods, DPO
and IPO cannot explore more CoT paths by them-
selves, thus, their performances are limited by the
quality of data sampled from an sub-optimal policy.
In addition, their policies are set to maximize the re-
ward given by their implicitly trained reward mod-
els. Our preference data, which is sampled from
the train set, might not be ideal for reward model-
ing as there may be neither incorrect responses for



easy questions nor correct responses for hard ques-
tions. On the other hand, PPO not only is an online
method that explores CoT solution paths automat-
ically, but it also does not require reward model
training as the reward function can be directly used.
Thus, PPO is chosen in our later experiments.



Example from GSM8K

Question:
If Sam and Harry have 100 feet of fence between them , and they agree to split it with Harry
getting 60 feet more than Sam , how much is left over for Sam?

SFT

# Epoch 1
def solution ():

fence_initial = 100
fence_difference = 60
fence_harry = fence_initial + fence_difference
fence_sam = fence_harry - fence_difference
fence_left = fence_initial - fence_sam
result = fence_left
return result

# Epoch 3
def solution ():

fence_initial = 100
harry_feet = 60
sam_feet = harry_feet - 1
sam_feet = sam_feet * 2
sam_feet = sam_feet / 2
sam_feet = sam_feet
result = sam_feet
return result

# Epoch 5
def solution ():

fence_length = 100
harry_extra_feet = 60
harry_feet = fence_length / 2 +
harry_extra_feet
sam_feet = fence_length / 2
left_over_feet = fence_length - harry_feet -
sam_feet
result = left_over_feet
return result

ReFT

# Epoch 1
def solution ():

fence_total = 100
fence_harry = fence_total - 60
fence_sam = fence_harry - 60
fence_left = fence_total - fence_harry -
fence_sam
result = fence_left
return result

# Epoch 3
def solution ():

fence_total = 100
sam_fence = (fence_total / 2) - 60
result = sam_fence
return result

# Epoch 5
def solution ():

fence_total = 100
sam_fence = (fence_total - 60) / 2
result = sam_fence
return result

Figure 7: P-CoT responses of SFT and ReFT checkpoints at epoch 1,3 and 5 to the same question in GSM8K
dataset. Reponses in green frame are correct while responses in red frame are incorrect.
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